Năng lượng tương lai: Hydrogen

Mai Thanh Truyết

Bước vào thế kỷ 21, việc xử dụng đa dạng năng lượng (energy diversity) trong chuyển vận là một trong những suy nghĩ lớn cho công nghệ năng lượng trong tương lai. Đây là một tiềm năng để cho tất cả những nghiên cứu hiện tại chú tâm vào như khả năng truy tìm nguồn nguyên liệu thay thế xăng dầu trong vận chuyển như hơi đốt, rượu ethanol, điện, hydrogen, hay một hay nhiều hổn hợp của các loại năng lượng vừa kể trên.
Năng lượng hydrogen đã được chú ý như sau: Hydrogen là một nguyên tố chiếm tỷ lệ cao nhất so với tất cả các nguyên tố khác trên địa cầu. Nhưng hydrogen không hiện diện dưới dạng nguyên tử hay phân tử mà dưới dạng hợp chất với các nguyên tố khác như nước gồm có hai hydrogen và một oxygen. Do đó, một khi hydrogen được tách rời, sẽ biến thành một nguồn cung cấp nhiệt năng rất lớn và là một loại năng lượng sạch.
Hydrogen có thể tách rời qua sự điện giải nước (H2O). Trong thiên nhiên, một số rong rêu và vi khuẩn, qua sự tiếp hợp của ánh sáng mặt trời có thể phóng thích ra hydrogen. Đây là một loại năng lượng không làm ô nhiễm không khí. Cơ quan Quốc gia Nghiên cứu Không gian Hoa kỳ từ năm 1970 đã sử dụng hydrogen làm nguyên liệu chính cho các hỏa tiển chuyên chở các tàu vũ trụ vào không gian.

hydrogen

Vào ngày 8/1/2007, Cty H2Gen Innovations, Inc. công bố là đã hoàn tất việc chuyển giao hệ thống sản xuất HGM 2000 Hydrogen đến Cty Chevron Hydrogen Co. ở Florida. Hệ thống nầy sẽ là một thí điểm đầu tiên, đã được thực hiện vào cuối tháng giêng vừa qua. Đó là việc xử dụng xe buýt chạy bằng nhiên liệu hydrogen ở phi trường Orlando. Đây là một chương trình tài trợ bởi Cơ quan Bảo vệ Môi trường Florida. Máy HGM 2000 Hydrogen có khả năng sản xuất 115 Kg hydrogen nguyên chất (99,999% tinh khiết) đủ cung ứng cho 8 chiếc xe buýt lớn chạy suốt ngày trong phi trường.
Trong buổi lễ chuyển giao. TGĐ của H2Gen tuyên bố: "Đây là một bước quan trọng cho chúng ta. Hệ thống HGM 2000 rất dễ di chuyển, dễ lắp đặt, cũng như vận hành trong việc chuyển tải nhiên liệu hydrogen vào xe". Hệ thống nầy dựa theo nguyên tắc chuyển đổi khí thiên nhiên và nước thành hydrogen; do đó, sự an toàn tuyệt đối được bảo đảm trong khi di chuyển.
Thành quả nầy cho thấy Hoa Kỳ và các quốc gia phát triển trên thế giới đã bắt đầu xử dụng hydrogen như là một nhiên liệu thay thế dầu. Và việc chuyển đổi nầy kích thích công nghệ xe hơi trong việc nghiên cứu để thích ứng với tình thế mới là dùng nhiên liệu thay thế như hydrogen. Đây cũng là một bước ngoặc trong việc hạn chế khí thải CO2.

1 - Nguồn sản xuất hydrogen
Các nguyên liệu và phươngpháp sau đây hiện đang được nghiên cứu và ứng dụng để sản xuất hydrogen. Đó là khí đốt thiên nhiên, than đá, nguồn năng lượng hạch nhân, phương pháp điện giải, năng lượng gió, năng lượng sinh khối (biomass), và năng lượng mặt trời.
Hydrogen từ khí đốt thiên nhiên: Điều chế hydrogen từ các nguồn nguyên liệu thiên nhiên như khí đốt được thực hiện dễ dàng nhất, và không cần phải sản xuất một nguồn nguyên liệu trung gian khác. Lợi điểm thứ hai, là phương pháp nầy đưa đến một công nghệ không phức tạp và có tỷ lệ hydrogen-carbon cao; do đó, hạn chế được tối đa lượng khí carbonic phát thải vào không khí.
Phương pháp nầy thích hợp với những quốc gia có nguồn dự trử khí đốt lớn như LB Nga, nhưng lại khó thích hợp cho Hoa Kỳ và Tây Âu, vì cần phải nhập cảng nguyên liệu khí đốt.
hydrogen

Nguyên lý chuyển đổi từ khí đốt methane CH4 ra hydrogen gồm các phương cách sau đây:

  • 1- phản ứng chuyển hóa hơi methane và oxid hóa từng phần.
  • 2- Hoặc kết hợp chung hai giai đoạn với nhau. Nhưng trên thực tế hỗn hợp khí vẫn còn chứa carbon monoxide (CO), carbon dioxide (CO2) và một phần nhỏ khí methane còn sót lại.

Do đó cần phải qua một quy trình chuyển hóa thứ hai với hơi nước dưới những hóa chất xúc tác với nhau để tạo ra hydrogen như sau:
CO + H20(hơi) -> CO2 + H2
CH4 + 2H20(hơi) -> CO2 + 4H2
Và sau cùng khi tinh chế lại, quy trình sản xuất sẽ cho ra hydrogen có độ tinh khiết rất cao.

Phương pháp chuyển đổi khí đốt ra hydrogen trong giai đoạn chuyển tiếp hiện tại có thể là một giải pháp có hiệu quả kinh tế cao nhất vì nguồn vốn đầu tư và sản xuất tương đối thấp so với các phương pháp khác.
Đặc điểm của phương pháp nầy là dễ thực hiện và khi sản xuất ở quy mô lớn sẽ làm giảm giá thành. Đặc điểm thứ hai, là ở các hệ thống phân phối, ở các điểm bán lẽ không cần nhân viên có trình độ cao để chuyển khí hydrogen từ hệ thống phân phối qua tế bào tiếp nhận của xe.
Theo ước tính, một hệ thống sản xuất 480Kg hydrogen/ngày sẽ giảm từ 3.847 $/Kg/ngày còn 2.000 $/kg/ngày và giá hydrogen sẽ giảm xuống từ 3,51 còn 2,33 Mỹ kim/Kg. Phương pháp nầy đã áp dụng với quy mô "pilot" vào năm 2011.

Hydrogen từ than đá: Phương pháp nầy được áp dụng ở các nhà máy nhiệt điện dùng than và quy trình tổng hợp hóa khí trong than (IGCC). Đây là một phương pháp sạch biến than thành năng lượng đang ngày càng phát triển ở Hoa kỳ. Do đó, việc phối hợp vừa sản xuất điện và khí hydrogen trong các nhà máy phát điện dùng than sẽ giảm giá thành của hydrogen và phương pháp nầy có hiệu quả kinh tế rất cao. Đây là một phương pháp biến than thành khí (gasification) dựa theo nguyên lý oxid hóa than đá với hơi nước ở nhiệt độ và áp xuất cao. Trong điều kiện trên, năng lượng được thành hình để có thể biến thành điện năng và khí hydrogen theo như chuổi phản ứng vừa đan cử ở phần trên.
Thêm nữa, với phương pháp trên, sản lượng hydrogen có được rất cao, có khả năng cung ứng nhiên liệu cho nhiều hệ thống phân phối trong một vùng rộng lớn. Vã lại, trữ lượng than đá của Mỹ còn đủ cung ứng cho nhu cầu trong vòng 250 năm nữa; như vậy sẽ không có biến động về giá cả như việc dùng khí đốt mà Hoa Kỳ cần phải nhập cảng. Tuy nhiên có một điểm bất lợi lớn cho phương pháp nầy là lượng khí CO2 thải hồi rất lớn, lớn hơn tất cả phương pháp hiện nay để sản xuất hydrogen. Do đó, cần phải có hệ thống thu hồi khí carbonic bằng cách áp dụng kỹ thuật chuyển hóa carbon (sequestration).
Với phương pháp nầy, giá thành của H2 được ước tính khoảng $1,03/Kg. Trong tương lai, nếu áp dụng các phương pháp hoàn chỉnh hơn như thiết lập các ló phản ứng hóa khí lớn, và tăng hiệu năng việc tách rời cũng như tinh chế H2, giá thành có thể giảm xuống còn $0,90/Kg. Phương pháp nầy đã đem vào áp dụng tại California vào năm 2015.

Hydrogen từ năng lượng hạch nhân: Sản xuất H2 từ nguồn năng lượng nầy có hai điểm lợi:

  • 1- Nguồn nguyên liệu chính là uranium có trữ lượng lớn ở HK, Canada, và Úc Châu. Do đó đây là một nguồn nguyên liệu ổn định và an toàn.
  • 2- Nguồn năng lượng hạch nhân không tạo ra khí carbonic vào bầu khí quyển cũng như các khí thải độc hại khác.

Quá trình sản xuất H2 trong các ló phản ứng hạch nhân có thể được lý giải như sau: hơi nước được điện giải trong phản ứng nhiệt hóa (HTES) từ khoảng 700 - 1.0000C để phóng thích ra H2. Phản ứng nầy chiếm ưu thế hơn ví không cần sự hiện diện của các chất xúc tác và cho hiệu suất cao hơn phản ứng nhiệt hóa.
Tuy nhiên, vì cùng sản xuất đồng loạt địên năng và hydrogen, cho nên cần có sự hiện diện của hai lò phản ứng ở trong cùng một phạm vi sản xuất. Điều nầy đòi hỏi mức an toàn vận hành rất cao. Mọi sơ suất có thể biền thành một tai nạn thảm khốc cho cư dân trong vùng.

hydrogen

Phương pháp điện giải nước để có được hydrogen và oxygen đã được phát minh vào cuối thế kỷ 18. Phương pháp nầy không cho hiệu quả kinh tế cao so với các phương pháp trên. Nhưng hiện tại, cách nầy có thể dự phần không nhỏ trong giai đoạn chuyển tiếp dùng năng lượng hydrogen, vì dễ dự trử và hệ thống điện giải có thể được thiếp lập ngay tại các tạm bán xăng dầu. H2 sẽ được chứa trong những bình chứa đặc biệt sẵn sàng được bơm thẳng vào bình nhiên liệu của xe.
Giá thành được ước tính là $2,50/Kg cho hệ thống điện giải nhỏ và $2,0/Kg cho các hệ thống lớn. Trong tương lai, giá có thể giảm hơn nữa do việc làm tăng hiệu năng điện giải từ 63 lên 75% qua sự kiện làm giảm nguồn năng lượng làm nóng hơi nước, và đã được đem áp dụng vào từ năm 2010.
Hydrogen từ năng lượng gió và ánh sáng mặt trời: Việc sản xuất hydrogen từ các nguồn năng lượng tái tạo vẫn còn là một đề tài nóng bỏng hiện tại, vì đây là mục tiêu dài hạn cho tương lai. Do đó, năng lượng gió chuyển đổi thành điện năng; và sau cùng, dùng điện năng nầy để phân giải nước thành hydrogen.

hydrogen

Vấn đề được đặt ra ở đây là làm thế nào để có hiệu năng tối đa, vì vậy:
*  Cần phải nghiên cứu công nghệ turbine gió và chuyển hóa thành điện năng để có được giá thành thấp so với hiện tại.
*  Giảm giá thành của công nghệ phân giải nước.
* Và sau cùng phối hợp hợp lý hệ thống turbine gió, hệ thống phân giải, cùng hệ thống bình chứa hydrogen.
Một khi thực hiện được ba điều trên, nguồn năng lượng gió sẽ là nguồn năng lượng tái tạo hiệu quả nhất cho việc cho việc chuyển đổi thành điện năng và hydrogen cho thế kỷ 21 nầy. Hiện tại, giá thành của nguồn điện năng từ năng lượng gió đã giảm tùy theo vùng từ 5 đến 7 xu/kwgiờ, không tính tới tiền trợ cấp khuyến khích của chính phủ liên bang. Nếu công nghệ gió có khả năng làm tăng hiệu năng chuyển đổi, giá thành sẽ càng giảm hơn nữa (hiện tại, khả năng chuyển đổi nầy là 30%).
Yếu tố môi trường cũng là một lợi thế cho việc ứng dụng năng lượng gió vào việc sản xuất hydrogen, vì nguồn năng lượng nầy hoàn toàn không phát thải khí carbon monoxide (CO), khí carbon dioxide (CO2), nitrogen oxide (N0x), sulfur dioxide (SO2), và những hóa chất hữu cơ nhẹ và kim loại độc hại như trong kỹ nghệ điện từ than đá hay dầu hỏa.
Với phương pháp nầy, giá thành của hydrogen được ước tính là $6,64/Kg nếu hệ thống gió – phân giải – hydrogen được hoàn chỉnh với hiệu suất tối đa, giá thành có thể giảm xuống còn $2,86/Kg Hydrogen.

2 - Toyota Mirai 2017
hydrogen

Điển hình năm nay, hảng Toyota cho ra đời serie Toyota Mirai 2017, chiếc xe chạy bằng nhiên liệu hydrogen lỏng, dựa theo nguyên lý điện phân với oxygen trong không khí, từ đó tạo ra điện là nguyên liệu để kích động động cơ xe.
Căn cứ theo Toyota, giá MSRP của một chiếc Mirai 2017 là $57,500, cộng thêm $865 phí vận chuyển giao hàng (destination fee). Khách hàng mua Mirai 2017 có thể hưởng khoản khấu trừ thuế liên bang $8,000, và $5,000 tiền giảm giá của tiểu bang California.

hydrogen

Mỗi khi "nạp" năng lượng, Toyota có thể chạy tối đa là 312 dặm. Thời gian cần thiết cho một lần nạp năng lượng là 5 phút. Về mức độ gia tốc, Mirai tăng tốc từ 0-60 mph trong chừng 9 giây.
Hiện nay, trên toàn tiểu bang California chỉ có khoảng 30 trạm nạp hydrogen. Trong khi các trạm sạc dành cho xe điện trên toàn nước Mỹ đã đạt tới con số gần 16,000. Có nghĩa là người đi xe điện cảm thấy yên tâm hơn về vấn đề nạp năng lượng. Chưa kể là các chủ xe đều tự nạp điện cho xe tại nhà.
Cho đến nay, những phương pháp sản xuất hydrogen "sạch" thực sự vẫn đang tiếp tục được nghiên cứu, thí dụ như sử dụng vật liệu sinh học, tái chế; sử dụng phản ứng quang điện phân, phản ứng phân hủy nhiệt…
Có một điều chắc chắn, khuynh hướng sản xuất các loại xe sạch thay thế cho xe xăng truyền thống là một quá trình không thể đảo ngược. Cho dù nước Mỹ có thể bị chậm lại do những chính sách mới của chính phủ Donald Trump, nhưng cả thế giới vẫn đang hướng về những chiếc xe xanh, trong đó có chiếc Toyota Mirai của hãng Toyota.

3 - Lợi và hại trong việc xử dung năng lượng hydrogen
Năng lượng gió hiện đang có lợi thế trong việc sản xuất nguồn năng lượng hydrogen và có khả năng biến nguồn năng lượng nầy có hiệu quả kinh tế cao. Do đó, đây sẽ là nguồn năng lượng trong tương lai, giảm thiểu sự phát thải khí carbonic, tác nhân chính của sự hâm nóng toàn cầu, và giảm thiểu lượng hydrocarbon trong dầu khí dùng cho việc di chuyển và sản xuất ra điện năng tiêu dùng.
Qua thời gian, công nghệ gió có những bước tiến đáng kể trong việc thu hồi toàn bộ sức gió để làm tăng vận tốc quay của những cánh quạt, cùng hệ thống dự trữ điện nănghòan chỉnh sẽ là hai yếu tố quyết định.
Tuy nhiên, chúng ta cần phải lưu ý đến yếu tố an toàn trong việc xử dụng hydrogen trong kỹ nghệ vận chuyển. Hydrogen là một khí nhẹ nhất, rất dễ bị rò rỉ trong các hệ thống dây nối trong xe. Theo KS Rudolph Pick, chuyên gia về hydrogen ở Florida, chỉ cần một sự rò rỉ nhỏ cũng có thể gây ra tai nạn chết người do hydrogen sẽ phát nổ khi thoát ra ngoài không khí.
Do đó, một khi có tai nạn do xe chạy bằng nhiên liệu hydrogen, thảm nạn sẽ xảy ra tức khắc. Và đây là một bất lợi lớn nhất cần phải khắc phục trong tương lai, trước khi đem công nghệ nầy vào áp dụng.

4 - Thay lời kết
Trên đây là những suy nghĩ đã được khơi mào để đóng góp vào:
• 1- Việc hạn chế hiệu ứng nhà kính, và sự hâm nóng toàn cầu theo tinh thần của Thượng đỉnh COP21;
• 2- Giải quyết ô nhiễm môi trường do việc gia tăng dân số và phát triển xã hội của các quốc gia trên thế giới;
• 3- Và nhất là để bổ túc vào sự thiếu hụt năng lượng hóa thạch trên thế giới trong tương lai khi các nguồn năng lượng trong thiên nhiên sắp bị cạn kiệt.
Các quốc gia trên thế giới hiện đang đứng trước 3 vấn nạn chính:
- Nhu cầu năng lượng để phát triển kinh tề và cân bằng mức gia tăng dân số.
- Nhu cầu gia tăng phúc lợi của người dân.
- Và nhu cần giải quyết ô nhiễm môi trường qua việc gia tăng phát triển.
Đối với các quốc gia có trình độ phát triển và kỹ thuật cao, ba nhu cầu trên đã được giải quyết và họ đang đi dần đến những công nghệ "sạch" trong phát triển cộng thêm viễn kiến lớn hướng về tương lai để thay thế một số nguồn năng lượng không còn thích hợp trong việc bảo vệ môi trường.
Đối với các quốc gia đang phát triển trong đó có Việt Nam, hiện đang phải tập trung vào nhu cầu đầu tiên, nghĩa là cần phải gia tăng phát triển để vừa giải quyết nạn gia tăng dân số vừa cố gắng thâu ngắn cách biệt giàu nghèo so với các nước đã phát triển; do đó, họ không có điều kiện hay không cố gắng tạo điều kiện để thực hiện hai nhu cầu sau. Chính vì lý do đó, triển vọng hội nhập vào cuộc chơi toàn cầu hóa của thế giới của Việt Nam vẫn còn xa vời.
Và vô hình chung, chính các quốc gia đang phát triển như Việt Nam đã hướng dẫn đất nước họ vào con đường bế tắc do việc phát triển không đồng đều, vô tổ chức, thiếu kế hoạch đúng đắn và dài hạn gây ra, trong đó việc xem thường công cuộc bảo vệ môi trường là một trong những nguyên nhân chính yếu.
Tương lai của mỗi quốc gia đều nằm trong tầm tay của những người nắm quyền bính, và chỉ có họ với tầm nhìn xa và thông thoáng mới có khả năng đưa đất nước cất cánh đi lên. Xin đừng ù lì dậm chân tại chỗ, thụ động mong chờ viện trợ đến từ bên ngoài, cũng như tận tình hủy hoại đất nước như đã xảy trong quá khứ và hiện tại.
Mai Thanh Truyết
Hội Bảo vệ Môi trường Việt Nam – VEPS
Houston – Tháng 9-2017

 http://maithanhtruyet.blogspot.com

 


Hóa học Xanh - Phòng ngừa ô nhiễm

Chiến lược tối ưu cho sự phát triển toàn cầu

Trong vòng hai thập niên trở lại đây, ở các quốc gia hậu kỹ nghệ, phong trào Hóa học Xanh (Green Chemistry) đã được các nhà khoa học đưa lên hàng đầu trong việc giải quyết ô nhiễm và bảo vệ môi trường. Mục tiêu nầy do Hội Đồng LHQ về Môi sinh và Phát triển đề ra qua Nghị trình 21 là:

  • Tạo dựng tăng trưởng kỹ nghệ.
  • Cân bằng môi sinh.
  • Tiến bộ xã hội.

Đây là ba nguyên lý căn bản để có thể xây dựng được một sự phát triển bền vững cho toàn cầu. Một trong những biện pháp để tiến tới mục tiêu trên là làm thế nào để phòng ngừa ô nhiễm. Từ suy nghĩ nầy, phong trào hóa học xanh ngày càng phát triển mạnh và được xem như là một biện pháp hữu hiệu nhất hiện tại để giải quyết các vấn nạn môi trường.

Hóa học Xanh là gì?

Theo EPA Hoa Kỳ, Hóa học xanh được dựa trên một tập hợp các nguyên tắc khi được sử dụng trong việc thiết kế, phát triển hay thực hiện các sản phẩm hóa chất và quy trình, cho phép các nhà làm khoa học vừa bảo vệ môi trường, vừa có lợi cho nền kinh tế, con người và trái đất.
Hóa học Xanh sử dụng năng lượng tái tạo, vật liệu sinh học phân hủy (bio-degradable).
Hóa học Xanh sử dụng xúc tác sinh học (biocatalysis) để nâng cao hiệu suất và tiến hành phản ứng ở nhiệt độ thấp hoặc môi trường xung quanh.
Hóa học Xanh là một hệ thống phương pháp đã được chứng minh tính hữu hiệu.
Hóa học Xanh làm giảm thiểu việc sử dụng các chất độc hại.
Hóa học Xanh cung cấp một lộ trình chiến lược để xây dựng một tương lai bền vững.

Nỗ lực của EPA nhằm mục đích gia tăng việc áp dụng các kỹ thuật cách mạng và đa dạng để hướng tới những lợi ích về môi trường, sự đổi mới và xây dựng một nền kinh tế tăng trưởng bền vững. Hóa học Xanh cũng là một phong trào cung cấp và hỗ trợ một diễn đàn duy nhất cho việc xuất bản các nghiên cứu sáng tạo về sự phát triển của công nghệ thay thế bền vững.
Phạm vi của Hóa học Xanh dựa vào, nhưng không giới hạn vào định nghĩa của Anastas và Warner (Green Chemistry: Theory and Practice, P. T. Anastas and J. C. Warner, Oxford University Press, Oxford, 1998) gợi ý. Hóa học xanh là việc áp dụng một tập hợp các nguyên tắc để làm giảm thiểu hoặc loại bỏ việc sử dụng hoặc tạo ra chất độc hại trong các quy trình thiết kế, sản xuất và ứng dụng các sản phẩm hóa chất.
Hóa học Xanh nằm trên biên giới của nhiều lãnh vực khoa học khác nhau và xuất bản các nghiên cứu nhằm cố gắng để giảm thiểu tác động môi trường của các công ty hóa chất bằng cách phát triển công nghệ căn bản không độc hại cho sinh vật sống và môi trường.
Thuật ngữ "hóa học xanh", còn được gọi là hóa học sạch hoặc hóa học “hiền” (benign) và bền vững, đề cập đến việc thiết kế các hóa chất và xây dựng các quy trình để giảm thiểu rủi ro cho con người và giảm thiểu ô nhiễm môi trường.
Mục tiêu của giải pháp hóa học xanh là để làm giảm bớt hoặc loại bỏ các tác động có hại của các hóa chất trong cuộc sống bán hủy (half-life) của chúng.
Những hướng dẫn cốt lõi liên quan đến hóa học xanh được nêu trong "Mười hai Nguyên tắc trong Hóa học Xanh" (Twelve Principles of Green Chemistry) của Cơ quan Bảo vệ Môi trường (USEPA), dùng làm căn bản cho việc sáng tạo và thực hiện các hóa chất và quá trình sản xuất.

Lịch sử hóa học xanh


Dấu vết nguyên thủy của hóa học xanh có thể kể đến từ nhiều thập kỷ của thế kỷ 20 liên quan đến các nhà hoạt động môi trường có ảnh hưởng lớn, chẳng hạn như Rachel Carson. Vào năm 1962, Cô công bố trên báo cáo:"Sức bật thầm lặng” (Silent Spring) đã thay đổi nhận thức của công chúng đối với thuốc trừ sâu rầy và các mối liên quan của chúng đối với việc ô nhiễm môi trường.
Và tám năm sau đó, Cơ quan Bảo vệ Môi trường Hoa Kỳ (USEPA) đã được thành lập vào năm 1970. Các tài liệu tham khảo EPA vẫn còn tồn đọng lại tên tuổi của Rachel Carson, người được coi là một nhà sáng tạo hàng đầu về bảo vệ môi trường, một nguyên nhân tiên khởi mở đường cho hóa học xanh trong các ứng dụng thực tế.
Nói về rủi ro hóa chất, các chuyên gia cho rằng một trong những bước đầu tiên hướng tới thực hành hóa học xanh là lượng giá các dữ liệu và sự kiện không bền vững trong công nghệ hóa chất, và làm việc với các nhà sản xuất hoặc các nhà phát minh, sáng chế để thay thế bằng vật liệu an toàn hơn và bền vững hơn.
Một số rủi ro chính để lượng giá bao gồm: thuốc trừ sâu rầy được sản xuất cho nông nghiệp, việc phát thải các chất độc hại trong quá trình sản xuất và trong các sản phẩm, và lượng khí thải trong nhà và ngoài không khí…từ đó nguy cơ đe dọa cho sức khỏe con người và phẩm chất không khí sẽ được đề cập đến cũng như việc truy tìm giải pháp giải quyết vấn đề.

Cuộc hành trình của Hóa học Xanh


Hàng năm có rất nhiều Hội nghị ở cấp quốc gia và quốc tế về vấn đề trên qua những chương trình kỹ thuật, nhất là ở các đại hội của Hội Hóa học Hoa Kỳ (American Chemical Society – ACS). Nhiều tạp chí khoa học khác đều có những ấn bản đặc biệt liên quan đến Hóa học Xanh như tạp chí Nghiên cứu Khoa học và Hạch toán Hóa học (Scientific Research & Accounts of Chemical). Riêng tại Anh Quốc, Hội Hoá học Hoàng gia đã phát hành tạp chí Hóa học Xanh từ năm 2000.
Từ khi khởi xướng chương trình Hóa học Xanh toàn cầu năm 1996, hàng năm thế giới chọn một chủ đề đặc biệt nhằm thực hiện việc giảm thiểu sự ô nhiễm môi trường thế giới. Năm 2016, Hội nghị Hóa học Xanh nhóm họp tại New York City ngày 2/12 với đề tài “Giám hộ về Hóa học Xanh - The Guardian’s Green Chemistry, trong đó các thành viên lên tiếng và đặt vấn đề là “làm thế nào để có một kỹ nghệ hoàn toàn không độc hại (toxin-free) trong tương lai.
Và sang năm 2017, vào ngày 16-18/10 tại Atlanta sẽ tổ chức “Hội nghị Quốc tế lần thứ 4 về các Hệ thống Nghiên cứu trong quá khứ và hiện tại của Hóa học Xanh” (4th International Conference on Past and Present Research Systems of Green Chemistry).
Hiện tại, hàng năm có trên 1.000 buổi hội thảo về Hóa học Xanh diễn ra trên toàn thế giới ở Hoa Kỳ, Âu châu, Á châu, và Úc châu, có trên 700 Tạp chí khoa học cùng sự tham gia của trên 30.000 nhà nghiên cứu và khoa học gia tham dự. Xin vào xem web: http://www.conferenceseries.com/
Một số viện đại học trên thế giới cũng đã thành lập phân khoa riêng cho môn Hóa học Xanh nầy. Viện Hóa học Xanh thuộc Hội Hóa học Hoa Kỳ đã đóng góp rất nhiều khóa huấn luyện cho sinh viên và các nhà nghiên cứu khắp nơi trên thế giới. Và công nghệ Hóa học Xanh đã ra đời cũng như đã được xem như là một công nghệ chiến lược cho phát triển bền vững toàn cầu. Hiện tại, trên thế giới đã có nhiều Viện hay Trung tâm nghiên cứu đã được thành lập ở Anh Quốc, Ý, Nhật Bản, Hoa Kỳ, và Úc Châu. Có thể nói hầu hết các nhà hóa học trên thế giới đều được biết qua thông tin về Hóa học Xanh ngày nay.

Hóa học Xanh hay Hóa học Bền vững?
Hóa học Xanh còn được gọi là Hóa học Bền vững đã được Cơ quan Bảo vệ Môi trường Hoa Kỳ (USEPA) đề xướng lần đầu tiên với mục đích để phòng ngừa ô nhiễm nhằm truy tìm những biện pháp giải quyết, sáng kiến kỹ thuật tối ưu hơn là đặt trọng tâm vào việc quản lý và thanh lọc các chất thải rắn, lỏng, và khí từ kỹ nghệ.

Trên 12 nguyên tắc căn bản để thực hiện công nghệ hóa học bền vững, công nghệ sinh học và siêu vi(nano) là hai công nghệ được áp dụng nhiều nhất trong các quy trình sản xuất và chế biến hóa chất. Điểm đặc sắc của hai công nghệ nầy là làm cho môi trường rất ít hay không bị ô nhiễm.
Vấn đề cấp bách được đặt ra là làm thế nào để cho tất cả các quốc gia trên thế giới được cập nhật thông tin và áp dụng những công nghê vừa mới được khám phá gần đây nhứt.
Nếu không, cuộc cách mạng xanh chỉ có thể xảy ra ở những quốc gia hậu kỹ nghệ và vấn nạn ô nhiểm toàn cầu vẫn chưa được giải quyết đúng đắn.
Trong kỳ Hội nghị Thượng đỉnh LHQ về Phát triển Bền vững tại Johannesburg năm 2002, GS Jurgen Metzger thuộc đại học Oldenburg (Đức) có nêu lên những tiến bộ của thế giới trong việc ứng dụng Nghị trình 21 vào chính quốc như việc xử dụng hóa chất an toàn cũng như lưu tâm nhiều đến sức khỏe của con người và môi trường. Đây chính là một đóng góp lớn của các công ty sản xuất hóa chất trên thế giới. Công ty Dow Chemical (Hoa Kỳ) là một công ty sản xuất hóa chất lớn nhất thế giới đã giảm được sự thải hồi thán khí (CO2) trong các quy trình sản xuất từ 28,1 triệu tấn cho năm 1994 xuống còn 26,1 triệu tấn năm 2002, mặc dù mức sản xuất đã tăng 20% trong giai đoạn nầy.
Sau cùng GS Metzger đã đề nghị giảm bớt 25% việc sử dụng năng lượng trong các công nghệ sản xuất hóa chất toàn cầu trong năm 2020 so với mức tiêu thụ năng lượng ở năm 2002. Và Ông cũng đã tiên liệu sẽ có 25% hóa chất hữu cơ sẽ được sản xuất từ các nguồn nguyên liệu tái sinh vào năm 2020 tới đây.
Tuy nhiên, Ông cũng đưa ra một nghi vấn là sẽ rất khó để cho toàn thế giới áp dụng các kỷ năng mới nầy cũng như “sự ù lì” của một số đại công ty vẫn còn muốn đi theo lề lối cũ trong kỹ nghệ như xử dụng nguồn nhiên liệu hóa thạch để sản xuất ra sản phẩm hóa học khác hơn là áp dụng nguồn nguyên liệu tái sinh. Và cũng vì vậy mà nguy cơ của sự hâm nóng toàn cầu tiếp tục tăng trưởng cho dù Thượng đỉnh COP21 ở Paris đã đưa ra nhiều cảnh báo và để nghị phương hướng giải quyết cho toàn cầu cho đến năm 2100!

Chất dẽo tổng hợp từ thực vật
Một trong những việc làm đáng ca ngợi của công ty Cargill Dow thuộc nhóm Nature Works là đã thành công trong việc sản xuất chất dẽo (plastic) từ trái bắp. Có thể nói đây là một cuộc cách mạng xanh lớn nhất vào đầu thế kỷ 21 nầy. Polylactic acid hay PLA là một loại chất dẽo thực vật có được từ việc tổng hợp đường dextrose trong trái bắp. Phát minh nầy đã được giải thưởng Presidential Green Chemistry Challenge năm 2002. Loại plastic “bắp” nầy có thể áp dụng trong các kỹ nghệ như quần áo, khăn, thảm, bao bì cho thực phẩm và nhiều ứng dụng khác trong nông nghiệp. Cũng theo Cargill Dow thì việc sản xuất chất dẽo trong điều kiện trên sẽ giảm thiểu được 20 đến 50% năng lượng xử dụng so với việc sản xuất theo quy trình sản xuất chất dẽo hiện tại.

Công ty nầy hiện ở Blair, Nebraska đã bắt đầu sản xuất 140.000 tấn/năm từ năm 2002 và đã tăng lên 1.000.000 tấn vào năm 2016.
EPA Hoa Kỳ đã tổng kết tất cả các thành quả của Hóa học Xanh tại nước nầy từ năm 1996 (năm khởi xướng Hóa học Xanh) đến 2015, là trung bình hàng năm, Hoa Kỳ đã:
Loại bỏ 800.000 tấn hóa chất trong đó có Chlorofluorocarbon (CFC)(Chất làm vỡ từng ozone của bầu khí quyển), hợp chất hữu cơ nhẹ, độc hại và không bị sinh thoái hóa.
Giảm 650 triệu gallon dung môi hữu cơ.
Giảm 138 tỷ gallon nước dùng trong việc sản xuất các kỹ nghệ dệt, phim ảnh, chất bán dẫn.
Giảm được 90.000 tỷ đơn vị năng lượng tiêu thụ BTU và 430.000 tấn thán khí (CO2) thải hồi vào không khí.
Giải quyết được 19 triệu tấn phế thải độc hại đã được thanh lọc hay tái sinh.

Cản ngại trong việc chuyển đổi quy trình sạch
Việc xử dụng những dung môi độc hại trong phòng thí nghiệm và trong kỹ nghệ là vấn đề rất quan trọng ảnh hưởng lên sự an toàn và sức khòe của công nhân và nhà nghiên cứu do ô nhiễm. Hóa học Xanh nhằm mục đích thay đổi những dung môi trên bằng dung môi khác, ít độc hại hay không độc hại và thay đổi các quy trình tổng hợp, phân tích, và tinh chế mà không xử dụng dung môi nữa.
Đứng trên căn bản lợi nhuận, việc chuyển đổi các quy trình cổ điển qua quy trình sạch thích hợp với tiến trình toàn cầu hóa là một việc không dễ dàng. Vì thế, tính cách “bảo thủ trong sản xuất” là một trong những cản ngại căn bản cho việc chuyển đổi nầy.
Lấy một thí dụ trong kỹ nghệ dược phẩm. Theo ước tính, nếu một công ty trong kỹ nghệ đã nghiên cứu thành công dây chuyền sản xuất sạch, thì trong giai đoạn chuyển đổi “chuyển tiếp”, công ty có thể bị gián đoạn hay giảm 50% sản xuất. Từ đó, việc mất mức lợi nhuận sẽ phải trả là những con số đáng kể mà khó có công ty nào chấp nhận hy sinh như vậy được.
Do đó, để giảm bớt tính bảo thủ trên, các công ty, ngoài việc nghiên cứu quy trình sạch, cần phải thực hiện song hành với việc nghiên cứu tài chính và thị trường trong công cuộc chuyển đổi nầy.

Những điểm “tối” trong hóa học xanh
Chuyển hóa hóa học hiện tại qua Hóa học Xanh là một cuộc cách mạng toàn diện, do đó những nhà hóa học và kỹ sư hiện đang gặp phải nhiều khó khăn trong công cuộc chuyển đổi nầy. Lý do là hầu như không có một quy trình dự kiến nào để làm căn bản cho nghiên cứu cả, mà chỉ dựa vào tính sáng tạo cá nhân của những người làm khoa học.
Trên lý thuyết, kinh tế nguyên tử (atom economy) là một nguyên tắc căn bản để thực hiện hóa học xanh đã được GS Burry Trost, đại học Stanford gợi ý vào năm 1991. Dựa theo quan niệm trên, phương pháp tổng hợp nguyên tử sẽ được áp dụng triệt để để hoàn thành sản phẩm sau cùng. Từ đó có thể kiểm soát được lượng “nguyên tử nguyên liệu” và “nguyên tử sản xuất”. Theo nguyên tắc nầy, thì trong quá trình sản xuất sản phẩm sẽ không có phụ phẩm (by-product). Thí dụ như trong quá trình cổ điển, việc sản xuất thuốc diệt cỏ 2,4,5-T đã sinh sản ra một phụ phẩm nổi tiếng là Dioxin với tỷ lệ là 1/1.000.000 tính theo trọng lượng sản xuất.
Vấn đề mấu chốt của việc tổng hợp trên là làm thế nào đo lường “nguyên tử nguyên liệu” cho công cuộc tổng hợp. Và đây cũng là một điểm đen trong cuộc cách mạng xanh nầy.

Hóa học Xanh ở Việt Nam
Theo sự quan sát và nhận định của một số chuyên gia ở Việt Nam, chúng ta có thể nhận thấy ngay là hiện nay, vẫn còn thiếu vắng trong việc nhận thức về tầm quan trọng cũng như các nhân tố cần thiết để phát triển Hóa học Xanh trong cộng đồng, cũng như các nhà sản xuất và quản lý sản xuất hầu như chưa sẳn sàng nhập cuộc vào việc ứng dụng Hóa học Xanh. Việc ứng xử thích hợp của cộng đồng đối với việc phát thải các chất độc hại và gây ô nhiễm còn hời hợt và yếu ớt. Về phần các nhà sản xuất, họ chỉ chú trọng vào khía cạnh lợi nhuận, lơ là khía cạnh ảnh hưởng đến môi trường chung quanh trong khi sản xuất.
Còn một vấn đề cốt lỏi khác nữa là nguồn nhân lực trong sản xuất và khả năng sử dụng hóa chất. Đã thiếu về số lượng và kém về phẩm chất, vì thế cho nên việc “hiểu và áp dụng” Hóa học Xanh ở Việt Nam chỉ có trên …bàn giấy, trong những lời hiệu triệu hay báo cáo lý thuyết, nhưng trên thực tế hoàn toàn… trống vắng!
Những người trực tiếp sản xuất và quản lý sản xuất cũng không được khuyến khích và đầu tư để nâng cao trình độ công nghệ và tích lũy kinh nghiệm thực tế, để có thể đóng góp vào việc cải tiến kỹ thuật trong việc chuyển đổi thành công nghệ sạch.

Kết luận

Mặc dù vẫn còn nhiều trở ngại trong việc chuyển đổi các quy trình sản xuất hóa chất cổ điển ra quy trình sạch, điều không thể chối cải là Hóa học Xanh hiện nay vẫn là một biện pháp phòng ngừa ô nhiễm hữu hiệu nhất. Tuy nhiên, nhận thức trên vẫn còn nhiều nghi vấn khó mang đến sự đồng thuận cho nhiều nhà khoa học trên thế giới.
Việc khai triển Hóa học Xanh không chỉ dẫn đến lợi ích cho môi trường, mà còn cho các lợi ích kinh tế và xã hội nữa. Sự kết hợp của ba lợi ích này được gọi là "ba điểm căn bản" trong 12 nguyên lý của hóa học xanh. Mặc dù hóa học xanh không phải là một giải pháp cho tất cả các vấn đề môi trường, nhưng đây là một cách tiếp cận tối ưu để ngăn ngừa ô nhiễm, nhờ đó, con người tránh được sự lãng phí trong sản xuất.
Phương pháp “Cải thiện sinh-quang học” (Phyto-remediation) là việc kết hợp trực tiếp giữa cây xanh, ánh sáng, và vi sinh vật để đưa đến sự ổn định hoặc làm giảm thiểu ô nhiễm trong đất, bùn, cặn, nước bề mặt, hoặc nước ngầm. Nó là một công nghệ thay thế có thể được sử dụng song hành cùng với các công nghệ làm sạch hiện nay thường đòi hỏi việc đầu tư vào nguồn vốn cao và tốn nhiều năng lượng.
Thanh lọc sinh học (Bio-remediation) liên quan đến sự suy thoái của các chất ô nhiễm hữu cơ (như hóa chất, kim loại nặng, dầu) trong đất hoặc nước, do tác động của vi sinh vật được nuôi cấy chọn lọc cho từng loại hóa chất phế thải và có khả năng chuyển hóa các chất gây ô nhiễm trên. Trong một quá trình “sinh tăng trưởng” (Bio-augmentation), những vi sinh vật được đưa vào môi trường bị ô nhiễm thường là một chất lỏng, kết hợp với các chất dinh dưỡng thích hợp để kích thích và thúc đẩy sự tăng trưởng của chúng; để rồi, từ đó, vô số vi sinh vật mới sẽ hấp thu hay hấp thụ các hóa chất phế thải.
Nhưng, câu hỏi được đặt ra là:
Liệu các nguyên liệu đến từ việc chuyển hóa sinh học, hay tái sinh có thể hoàn toàn thay thế được nguyên liệu dầu hỏa hay không?

Thán khí (CO2) và các nguồn khí thải khác có thể được thu hồi và chuyển đổi thành hóa chất mới hay không?
Liệu khinh khí (hydrogen) sẽ là một nguồn năng lượng chính trong tương lai?
* Liệu các hóa chất xử dụng trong nông nghiệp và dược phẩm sẽ là những hóa chất có thể dễ bị sinh thoái hóa (bio-degradable) và không còn ảnh hưởng lên môi trường?
Nhiều nhà môi sinh bi quan đã nghi ngờ sự thành công của khái niệm về Hóa học Xanh và từ đó quy kết là sự phát triển bền vững đúng nghĩa không thể nào thực hiện được và chỉ là mộng tưởng mà thôi.
Ngược lại, những người lạc quan tin tưởng rằng tiến trình phát triển bền vững là một hướng đi, chứ không phải là mục tiêu để đến đích. Và Hóa học Xanh là một cẩm nang căn bản đưa đến việc làm sạch và bảo vệ môi trường.
Nghĩ được như thế, Hóa Học Xanh sẽ là ngón tay chỉ hướng Niết Bàn của Đức Phật Thích Ca trong công cuộc phát triển bền vững toàn cầu.

2016
Mai Thanh Truyết
Hội Khoa học Kỹ thuật Việt Nam (VAST)

 

Đăng ngày 14 tháng 10.2017a